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Diffusion in an external potential in a two-dimensional channel of varying cross section is considered. We
show that a rigorous mapping procedure applied on the corresponding Smoluchowski equation yields a one-
dimensional evolution equation of the Fick-Jacobs type corrected by an effective coefficient D�x�. The proce-
dure enables us to derive this function within a recurrence scheme. We test this result on a model of stationary
diffusion in a linear cone in a homogeneous potential, which is exactly solvable. Extension of the approximate
formulas for D�x� derived for the diffusion alone is discussed.
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I. INTRODUCTION

Understanding classical transport in nanomaterials or bio-
logical systems, which are of an increasing interest in the last
decade, usually requires to solve the Fokker-Planck equation
in narrow nonhomogeneous channels. Instead of solving the
full-dimensional problem, one can look first for a certain
kind of dimensional reduction in the equation, and then to
deal with a low-dimensional �or one-dimensional �1D�� prob-
lem only, giving us a higher chance to find the solution in a
concise form.

The best understood case is the simplest one: diffusion in
a channel with varying cross section A�x�; x denotes the lon-
gitudinal coordinate. The d-dimensional diffusion equation,

���x,y,t�
�t

= �D0
�2

�x2 + Dy�
j=1

d−1
�2

�yj
2���x,y,t� , �1.1�

in the channel with reflecting boundaries can be reduced to
the Fick-Jacobs �FJ� equation �1�,

�p�x,t�
�t

= D0
�

�x
A�x�

�

�x

p�x,t�
A�x�

, �1.2�

governing the 1D density p�x , t�,

p�x,t� = �
A�x�

��x,y,t�dy , �1.3�

the integral of the d-dimensional density ��x ,y , t� over the
transverse coordinates y= �y1 , . . . ,yd−1�; D0=Dy is the diffu-
sion constant.

The next studies �2,3� showed that Eq. �1.2� is too simple,
giving unsatisfactory results in several cases. Reguera and
Rubí �3� proposed to correct the FJ equation by a function
D�x�,

�p�x,t�
�t

=
�

�x
A�x�D�x�

�

�x

p�x,t�
A�x�

, �1.4�

an effective diffusion coefficient estimated by the formula

D�x� = D0�1 + R�2�x��−�d, �1.5�

based on heuristic arguments. In two dimensions �2D�,
R�x�=A�x� is the width of the channel and �2=1 /3; for
three-dimensional �3D� symmetric channels, R�x� denotes

the x-dependent radius, A�x�=�R2�x�, and �3=1 /2.
The projection technique �4,5� based on introducing an-

isotropy of the diffusion constant Dy =D0 /��D0 in Eq. �1.1�
and the reflecting boundary conditions �BCs�, which is
equivalent to scaling of the transverse lengths
�yi ,A�x� ,R�x� , . . .� by 	�, enabled us to separate the fast
transverse modes �transients� from the slow longitudinal
ones in d-dimensional systems and to project them out by
integration over the cross section. The result is a recurrence
scheme, generating systematically corrections to the FJ equa-
tion as an expansion in �, starting with the right-hand side of
Eq. �1.2� as the lowest-order term.

In the limit of the stationary flow, the corrected FJ equa-
tion coming from this procedure takes the form of Eq. �1.4�
and the recurrence scheme enables us to fix D�x� unambigu-
ously as an expansion in � �6�. If the second and higher
derivatives of A�x� or R�x� are neglected, D�x� becomes
summable. For the symmetric 3D channels, the formula �1.5�
is recovered in the limit �→1. Summation in the 2D case
gives

D�x� = D0
arctan A��x�

A��x�
, �1.6�

which differs only slightly from the estimate �1.5� for 
A�

�1, so both formulas are still used. Usability of Eq. �1.5�
was tested numerically �7� and including the higher deriva-
tives of A�x� in D�x� was discussed in Ref. �8�.

However, aside from the diffusion, the particles are also
driven by forces in real systems. The simplest way of study-
ing such models of the narrow channels is introducing an
“entropic” potential Uent�x�. The cross-section area A�x� is
represented as a Boltzmann weight exp�−�Uent�x��; �
=1 /kBT denotes the inverse temperature, and Uent�x� is sim-
ply added to the “real” potential U�x�, entering the evolution
�Smoluchowski� equation. Again, the equation, or the corre-
sponding solution can be corrected by an effective coefficient
D�x�; the formula �1.5� �derived for the pure diffusion� was
usually applied in this case �9–13�.

For periodic channels, the effective mobility �ef f and the
diffusion coefficient Def f can be defined meaningfully by us-
ing the large time limit of the mean velocity �ẋ�t�� and the
variance of the position x�t� of a particle inserted in the chan-
nel �14�. These quantities can be computed by Brownian
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dynamic simulations, as well as calculated from the first two
moments of the first passage time �10,12� determined from
the 1D evolution equation. Comparison of the results for the
sinusoidal 2D channel with a constant force obtained by both
methods showed �12� that including the correcting coeffi-
cient �1.5� works well but only for small forces.

For calculation of the mean velocity and dispersivity
�Def f� in periodic channels, the macrotransport theory
�15,16� was successfully applied. Starting from the Smolu-
chowski equation with reflecting BC and adopting the scal-
ing of the transverse lengths by � �corresponding to 	� in our
mapping�, the moments of the 1D density p�x , t� were ex-
pressed rigorously as an expansion in �2. This theory exhib-
ited good agreement with numerical simulations in the whole
range of the applied forces.

The aim of the present paper is to demonstrate that also
the 1D evolution equation for the forced diffusion can be
derived rigorously by mapping of the Smoluchowski equa-
tion. If the force acts in the x direction, the potential U�x�
does not depend on the transverse coordinates and the aniso-
tropy of the diffusion constant �scaling of the transverse
lengths� can be introduced. Then the mapping procedure can
be applied in the same way as for the diffusion alone. We
arrive at the equation

�p�x,t�
�t

=
�

�x
A�x�D�x�e−�U�x� �

�x
e�U�x� p�x,t�

A�x�
�1.7�

valid in the limit of the stationary flow; the effective coeffi-
cient D�x� is expressed consistently as an expansion in �
=D0 /Dy and depends not only on the derivatives of A�x� but
also of U�x�. The mapping does not require periodicity of the
channel or the force; A�x� and U�x� should be analytic func-
tions.

The mapping procedure is presented in the following sec-
tion. In Sec. III, we test the resultant D�x� on a linear cone
with a constant force, which is an exactly solvable model.
Finally, we discuss possibility of extending the formula �1.6�
to diffusion under a constant force.

For simplicity, the mapping will be carried out only for
2D channels; its extension to higher-dimensional geometries
�e.g., symmetric 3D channels� is straightforward.

II. MAPPING PROCEDURE

We consider a 2D channel bounded by x axis and an ana-
lytic function A�x��y�0. Diffusing particles are dragged
by a force along the x axis; hence, the potential U�x� in the
channel depends only on the x coordinate. Then the 2D den-
sity ��x ,y , t� obeys the Smoluchowski equation,

���x,y,t�
�t

= D0
�

�x
W�x�

�

�x

��x,y,t�
W�x�

+
D0

�

�2��x,y,t�
�y2 ,

�2.1�

where W�x�=exp�−�U�x��; we put D0=1 in our next consid-
erations. As used in the mapping of the diffusion alone �4�,
we introduce here anisotropy of the diffusion constant; the
diffusion in the transverse direction is supposed 1 /� times
faster. This enables us to separate the transients in the trans-

verse direction, which are to be integrated out �5�. In our
mapping procedure, �� �0,1� serves as a small parameter, in
which the spatial operator of the mapped equation is ex-
panded.

The Smoluchowski equation �2.1� represents the mass
conservation law, so the components of the current density j
are

jx�x,y,t� = − W�x��x���x,y,t�/W�x�� ,

jy�x,y,t� = − �1/���y��x,y,t� . �2.2�

The vector j at the boundaries has to be parallel with them;
this requirement gives the Neumann BCs

�y��x,y,t� = 0
y=0,

�y��x,y,t� = �A��x�W�x��x
��x,y,t�
W�x�



y=A�x�

. �2.3�

The first step of the mapping is to integrate Eq. �2.1� over
the local cross section. Completing double integration by
parts and using BC �2.3�, we arrive at the equation

�p�x,t�
�t

=
�

�x
W�x�

�

�x

p�x,t�
W�x�

−
�

�x
�A��x���x,A�x�,t�� ,

�2.4�

governing the mapped 1D density p�x , t�,

p�x,t� = �
0

A�x�

��x,y,t�dy . �2.5�

The crucial point of the mapping procedure is to express
the 2D density at the upper boundary ��x ,A�x� , t� in Eq. �2.4�
by using the 1D density p�x , t�. We start with the case �
→0, when the transverse diffusion constant D0 /�→	. The
relaxation in the y direction is infinitely fast; hence, the
transverse profile of the 2D density remains flat; ��x ,y , t�
= p�x , t� /A�x� to satisfy the normalization condition �2.5�. If
substituted in Eq. �2.4�, we get

�p�x,t�
�t

=
�

�x
�W�x�

�

�x

p�x,t�
A�x�

−
A��x�
A�x�

p�x,t��
=

�

�x
A�x�W�x�

�

�x

p�x,t�
A�x�W�x�

, �2.6�

which is equivalent to the FJ equation.
For ��0, we can derive a recurrence procedure generat-

ing a sequence of corrections to the spatial operator of Eq.
�2.6�. The most effective way is to look for an operator

̂�x ,y ,�x�, mapping the 1D density p�x , t� back to the space
of solutions of the original 2D Smoluchowski equation �2.1�,
in the form of a series in �
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��x,y,t� = W�x�
̂�x,y,�x�
p�x,t�

A�x�W�x�

= W�x��
j=0

	

� j
̂ j�x,y,�x�
p�x,t�

A�x�W�x�
. �2.7�

Fixing 
̂0=1 restores the Eq. �2.6� in the order �0. If it is
substituted for � in Eq. �2.1�, we get

�
j=0

	

� j��t − �xW�x��x
1

W�x�
−

1

�
�y

2�W�x�
̂ j�x,y,�x�
p�x,t�

A�x�W�x�

= 0. �2.8�

The time derivative �t commutes with the spatial operators
and for �tp�x , t�, we use the mapped equation expected in the
form

�tp�x,t� = �xA�x�W�x��1 − �Ẑ�x,�x���x
p�x,t�

A�x�W�x�
, �2.9�

where the unknown operator Ẑ�x ,�x� is also expanded

�Ẑ�x,�x� = �
k=1

	

�kẐk�x,�x� . �2.10�

Combining Eqs. �2.8�–�2.10� and comparing the coefficients
at � j, we get the recurrence relation

�y
2
̂ j+1�x,y,�x� = −

1

W�x�
�xW�x��x
̂ j�x,y,�x�

− �
k=0

j


̂ j−k�x,y,�x�
1

A�x�W�x�

��xA�x�W�x�Ẑk�x,�x��x, �2.11�

we take Ẑ0�x ,�x�=−1 in this formula. After double integra-
tion of �y

2
̂ j+1, we fix two integration constants to satisfy BC
�2.3� and the normalization condition,

�
0

A�x�

dy
̂ j�x,y,�x� = 0, �2.12�

for j�0, coming from Eq. �2.5�. Finally, the corresponding

operator Ẑj�x ,�x� is obtained from Eq. �2.4�, if the jth order
term of the 2D density at the boundary ��x ,A�x� , t� in � is
expressed by the backward mapped p�x , t� onto the space of
2D solutions of the original Smoluchowski equation �2.1�,
i.e., by using Eq. �2.7� with the operator 
̂ j�x ,y ,�x� taken at
y=A�x�. After comparison with Eq. �2.9�, we find

Ẑj�x,�x��x =
A��x�
A�x�


̂ j�x,A�x�,�x� for j � 0. �2.13�

This scheme enables us to calculate simultaneously 
̂ j

and Ẑj up to an arbitrary order, starting from 
̂0=1 and Ẑ0
=−1, representing the FJ equation �2.6�. The resulting expan-
sion of 
̂ reads as


̂�x,y,�x� = 1 +
�A��x�
6A�x�

�3y2 − A2�x���x + . . . , �2.14�

the second- and the higher-order terms in � contain also de-
rivatives of the potential U�x�. Then the mapped equation up
to the second order is

�tp�x,t� = �xAW�1 −
�

3
A�2 −

�2A�

45
�2A�AA����x + A2A�3�

+ AA�A� − 7A�3 + �A�A�2U� + AA�U� − AA�U���

+ . . .��x
p�x,t�
AW

. �2.15�

The resultant spatial operator on the right-hand side of
this equation contains the derivatives �x up to the j+1st order
in the � j term and it is too complicated for use in practice.
The mapped equation becomes simpler in the stationary re-
gime. Like in the mapping of the diffusion equation �6�, the

operator �1−�Ẑ� can be replaced by a function D�x� in the
limit of stationary flow; the mapped equation can be rewrit-
ten in the form

�p�x,t�
�t

= �xA�x�W�x�D�x��x
p�x,t�

A�x�W�x�
. �2.16�

Both Eqs. �2.15� and �2.16� represent the 1D mass con-
servation law, so the 1D flux J�x , t� can be expressed as

J�x,t� = − �
0

A�x�

�x��x,y,t�dy = − A�x�W�x�D�x��x
p�x,t�

A�x�W�x�
,

�2.17�

from Eq. �2.16� and

J�x,t� = − A�x�W�x��1 − �Ẑ�x,�x���x
p�x,t�

A�x�W�x�
,

�2.18�

from Eq. �2.15�. In the stationary regime, the flux J�x , t�=J is

constant in x and t, and a relation between D�x� and Ẑ�x ,�x�
can be found. For a given flux J, the derivative
�x�p�x� /A�x�W�x��=−J /A�x�W�x�D�x�, as expressed from
Eq. �2.17�, becomes a function depending only on geometry
of the channel and the potential U�x�. If substituted in Eq.
�2.18�, we get after simple algebra

1

D�x�
= A�x�W�x��1 − �Ẑ�x,�x��−1 1

A�x�W�x�
, �2.19�

which fixes the effective diffusion coefficient D�x� unam-

biguously for Ẑ obtained from the mapping procedure. For Ẑ
in 2D channels, contained in Eq. �2.15�, we obtain

D�x� = 1 −
�

3
A�2 +

�2A�

45
�9A�3 + AA�A� − A2A�3�

− �A�3A�2U� + AA�U� + AA�U��� + . . . .

�2.20�
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Formula �2.16� for J can be rewritten in a more standard
form

J�x,t� = − D�x��A�x��x
p�x,t�
A�x�

+ �U��x�p�x,t�� ,

�2.21�

where the diffusion and the mobility terms are separated. The
effective function D�x� corrects both, mobility and the diffu-
sion constant in the same way, keeping �a kind of� the Ein-
stein relation between them valid.

The mapping presented shows that the concept of the en-
tropic potential works only within the FJ approximation, i.e.,
if the relaxation in the transverse directions is considered
infinitely fast. In Eq. �2.6�, A�x� and W�x� are combined in
the product, which enables us to understand A�x� as a Bolt-
zmann factor exp�−�Uent�x��. Then the “entropic” potential
Uent�x� can be simple added to the real potential U�x�. This is
no more valid if the next corrections are included; the con-
tributions from the derivatives of A�x� and U�x� enter the
effective coefficient D�x� in various different combinations.

Extension of the mapping to more complicated geom-
etries of the channels is straightforward. The form of the

mapped Eq. �2.9� remains the same; the operator Ẑ depends
on dimensionality and symmetry of the channel. For 3D
channels with cylindrical symmetry, we find

�tp�x,t� = �xA�x�W�x��1 −
�

2
R�2 −

�2R�

48
�2R�RR����x + R2R�3�

+ RR�R� − 14R�3 + �R�R�2U� − RR�U� + RR�U���

− . . .��x
p�x,t�

A�x�W�x�
, �2.22�

R denotes the local radius R�x� and A�x�=�R2�x� here. In the
stationary regime, we obtain

D�x� = 1 −
�

2
R�2 +

�2R�

48
�18R�3 + 3RR�R� − R2R�3�

− �R�3R�2U� + RR�U� + RR�U��� − . . . �2.23�

One can easily check that in the limit U�x�=const, formu-
las �2.20� and �2.23� restore D�x� known for the diffusion
alone �6�.

III. EXACT MODEL

In this section, we present the solution of an exactly solv-
able model: the stationary flow of particles diffusing in a
linear cone bounded by y=A�x�=�x and the x axis and
dragged by a constant force F in x direction. We calculate the
corresponding function D�x�, check the expansion �2.20�,
and discuss possibility of extension of the approximation
�1.6� for nonzero force.

The solution is trivial for zero force �8�. If we suppose a
pointlike source of particles at the origin of the coordinate
system, the model has radial symmetry. Then the density
��x ,y�=−C ln��x2+y2� / l0

2� satisfies the stationary diffusion
equation ��x

2+�y
2��=0, valid outside the source. The lines y

=�x of any � are parallel to the current density j=−��, so
the “no flux” BC at these lines is satisfied too. The integra-
tion constant C is fixed to set the correct flux J flowing
through the cone 0�y��x; the constant l0, adjusting BC
��x ,y�=0 at the distance l0 from the source, is irrelevant in
calculation of D�x� �8�.

A nonzero force parallel to the x axis breaks the radial
symmetry and the solution is not so easy. Still, the Smolu-
chowski equation �2.1� can be symmetrized for the corre-
sponding potential U�x�=−Fx by the substitution

��x,y� = e�Fx/2u�x,y� , �3.1�

then the stationary equation in the polar coordinates �r ,
�
reads as

�1

r

�

�r
r

�

�r
+

1

r2

�2

�
2 − ��F

2
�2�u�r,
� = 0, �3.2�

for r�0 �outside the source� and �=1. This equation is sepa-
rable; u�r ,
�=R��r�cos �
 and the solutions for the radial
part R��r� are the Bessel functions I���Fr /2� and
K���Fr /2�.

The functions I� diverge in r→	, so they cannot be con-
tained in the solution for the unbounded plain. In this case,
the stationary regime is described by the density

�0�x,y� = Ce�Fx/2K0��F

2
	x2 + y2� , �3.3�

which carries the 1D flux J flowing for x�0

J = − �
−	

	

dye�Fx��xe
−�Fx�0�x,y�� = 2�C . �3.4�

In the region of small �Fr, the leading term of �0� ln r, so
the homogeneous diffusion from the pointlike source is
dominant near the source. Using the asymptotic expansion of
K0 �17� for large �Fr, we get

�0�x,y� � �x2 + y2�−1/4e−�F�	x2+y2−x�/2, �3.5�

which is nearly the Gaussian in y with �y2��2x /�F. This
corresponds to the expected large scale picture; the particles
diffuse in y direction �D0=1� and move in x direction from
the source with the mean velocity �F.

Nevertheless, the density �3.3� does not satisfy the BC
�2.3� on any line y=�x except of �=0. To find a solution
satisfying the BC for a specific �, one can consider adding a
linear combination of other K���Fr /2�cos �
 in u�r ,
�. If
we represent the Bessel functions K� by the integral �17�,

K��r� = �
0

	

e−r cosh t cosh �tdt , �3.6�

then any solution of Eq. �3.2� based on K� has the form

u�r,
� = �
0

	

e−��Fr/2�cosh t�f�t + i
� + f�t − i
��dt ,

�3.7�

f�z� is some analytic function of the complex variable z.
Applying Eq. �3.7� in Eq. �3.2� and performing double inte-
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gration by parts, we find that any f�z� satisfying the condi-
tion �f��t+ i
�+ f��t− i
�� 
t=0=0 for any 
 generates a solu-
tion of Eq. �3.2�.

Finally, we fix the BC at the boundary y=�x. In the polar
coordinates, 0�
�
0, where �=tan 
0, the BC �2.3� for
u�r ,
� becomes

�
u�r,
�

=
0
= − sin 
0��Fr

2
�u�r,
0� �3.8�

for any radius r; BC at the x axis �
u�r ,
� 

=0=0 is satisfied
by the symmetry. If Eq. �3.7� is used in Eq. �3.8�, we arrive
at the conditions f�i
0�= f�−i
0� and

�f�t + i
0� − f�t − i
0��sinh t = i�f�t + i
0� + f�t − i
0��sin 
0

�3.9�

for any t� �0,	�. The last one is satisfied if f�z�
=g�z�tanh�z /2� and g�z� fulfills the relation g�t+ i
0�=g�t
− i
0� for any t. The important solution is generated by
g0�z�=coth��z /2
0�. We show in the Appendix that it is
connected with the 1D stationary flux

J = − �
0

�x

dye�Fx��xe
−�Fx/2u�x,y�� = 2
0, �3.10�

flowing along the x axis. The other solutions generated by
gn�z�=sinh�n�z /
0�; n=1,2 , . . . are the transients not carry-
ing the longitudinal flux and projected out by the mapping
procedure. For integer � /
0, these solutions can be inte-
grated from Eq. �3.7�; e.g., if 
0=� /3, g1�z� generates
u�r ,
� proportional to

K0�r̃� − 2K1�r̃�cos 
 + 2K2�r̃�cos 2
 − K3�r̃�cos 3
 ,

r̃=�Fr /2, but the solution �3.7� with

f�z� = g0�z�tanh� z

2
� = coth� �z

2
0
�tanh� z

2
� , �3.11�

which is of our interest, has to be treated in its integral form
in the next calculations.

Having calculated the stationary 2D density ��x ,y�, we
can express the effective diffusion constant D�x� from the
formula �2.17�

J

D�x�
= − xe�Fx�x�1

x
e−�Fx�

0

�x

��x,y�dy� . �3.12�

After some algebra �see the Appendix�, we arrive at the final
formula

1

D�x�
= 1 +

1

�Fx
−

2��

�Fx
0
2

��
0

	 dt

�1 + cosh��t/
0��
cos 
0

�cosh t + cos 
0�

�exp�−
�Fx

2
� cosh t

cos 
0
− 1�� . �3.13�

The integrals in Eqs. �3.7� and �3.13� converge only for
Fx�0. For negative Fx, the integration path in both formu-
las has to be changed

�
0

	

dt . . . →
1

2��0

	+i�

dt . . . + �
0

	−i�

dt . . .� ,

the path is arbitrary, but avoiding the poles on the imaginary
axis from the right side �Fig. 7�. The corresponding details
are given in the Appendix.

The coefficients of the expansion of the integral in Eq.
�3.13� in �Fx can be expressed explicitly �shown in the Ap-
pendix�; we get

1

D�x�
= 1 +

1

�Fx
−

1

�Fx
e�Fx�1 −

��Fx


0
+

���Fx�2

4
0

��1 +
2
0

sin 2
0
� − . . .� . �3.14�

Taking 
0=arctan �, the expansion of D�x� in �Fx and �
yields

D�x� =
arctan �

�
+ �Fx��4

15
−

5�6

63
+

2�8

25
− . . .�

+ ��Fx�2�−
4

315
�6 +

101

4725
�8 − . . .� + . . . .

�3.15�

In this model, � is the only parameter, which is scaled by 	�
�as the transverse length A��x��. Indeed, after this scaling, the
expansion �3.15� recovers the result of mapping �2.20� for
A��x�=�, �A�x�U��x�=−��Fx, and all the higher derivatives
of A�x� and U�x� being zero due to the linear boundary and
the constant force.

The function D�x� �3.13� is plotted in Fig. 1 for several
values of �. It reduces to the formula �1.6� in the case of zero
force. For F positive, its value rises to unit for any �. We can
interpret this result within the picture mentioned when we
analyzed �0�x ,y� �Eq. �3.5��. The particles fall in x direction
under the constant force F with the mean velocity �F, but in
y direction, they diffuse only to the distance �	x. For any
��0, there exists a distance x, where the boundary y=�x is
so far from the x axis that the particles cannot reach it by
diffusion. Figure 2�a� shows the transverse profiles of ��x ,y�

�20 �10 0 10 20
ΒFx

0.2

0.4

0.6

0.8

1

D�x�

Α�2

Α�1

Α�0.5

FIG. 1. Effective diffusion coefficient D�x� for the linear cone
bounded by y=�x and the x axis with a constant force F acting in
the x direction.
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generated by Eq. �3.11� for various �Fx and �=1, supporting
this picture. Then D�x�→1 says that the boundary does not
restrict the flowing particles for large �Fx.

On the other hand, the case F�0 can be interpreted as a
flow of particles falling from infinity into the cone and being
absorbed when hitting the origin. As the force is not parallel
to the slanted boundary, the particles are piled in its vicinity
as it is shown in Fig. 2�b�. The force obstructs the particles to
diffuse to the origin, pushing them to the boundary, so the
coefficient D�x� is even lower than in the case of no force.

Finally, we discuss extensibility of the formula �1.6� for
the forced diffusion. It is very difficult to sum directly some
infinite group of terms in Eq. �2.20� to obtain an �approxi-
mate� formula for D�x� in a concise form. The analysis for
the diffusion alone �8� showed that the most effective way is
to approximate the real boundary y=A�x� at some x by the
boundary of some exactly solvable model and to calculate
D�x� by taking the 2D stationary density for this model. For
example, if the boundary of a real channel is replaced by the
linear cone �Fig. 3�, the formula �1.6� is obtained, hence,
named the “linear approximation.”

In this context, the exactly solvable model of the station-
ary diffusion in a homogeneous field can serve for finding an
approximation of D�x� for any boundary. The formula �3.13�
reproduces exactly the expansion �2.20� up to the first de-
rivatives of U�x� and A�x�; i.e., it represents the exact sum of
these terms. Neglecting A� and the higher derivatives corre-
spond again to replacing the real boundary y=A�x� by its
tangent, so we get an extended linear approximation. With-
out any calculation, the approximated D�x� will be the for-
mula �3.13� with the parameters � and �Fx replaced by the
local values of A��x� and −�U��x�A�x� /A��x�, respectively.
For negative A�, we use the symmetry of D�x� seen in its
expansion �3.15�; the value of D�x� is unchanged if the signs
of both A� and U�=−F are inverted.

We test this approximation on a periodic channel �Fig. 3�
examined in Refs. �10–13�. We calculate the effective scaled
mobility � according to the modified Stratonovich formula

��F� =
�ẋ�
�F

=
1 − exp�− �F�

�FT1�F�
, �3.16�

where the integral

T1�F� = �
0

1

dx
e−�Fx

A�x�D�x��x−1

x

dx�A�x��e�Fx� �3.17�

comes from the mean first time of passage through one pe-
riod of the channel, corrected by the effective coefficient
D�x� by Burada et al. �11,12�. We use our notation and the
period L=1.

The results for the channel of A�x�=1.02−cos 2�x are
plotted in Fig. 4 and compared with the mobility obtained
from the FJ equation �D�x�=1� and the linear approximation
without field �1.6�. Let us recall that the Brownian dynamic
simulations �Fig. 2 in Ref. �12�� exhibit very good agreement
with Eq. �1.5� for small forces, but with growing F, � ap-
proaches 1 as predicted by the FJ approximation.

The linear approximation for nonzero forces based on the
formula �3.13� �the dotted line� fails to improve the result of
the standard linear approximation �1.6�. Nevertheless, it is
worth to analyze this failure. We refer to the stationary den-
sity in this channel as reported in Ref. �11� and presented in
Fig. 5 there. The Brownian simulations showed that the par-
ticles diffuse as a narrow stream across the broad parts of the
channel in strong fields. The particles are dragged by the
force so fast that they have no time to diffuse in the trans-
verse direction�s� and to explore the whole volume of the
bulge. This is the same situation as we found for large �Fx;
the particles were not able to reach the boundary and the
corresponding D�x� approached unit. So we suppose that
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0.6
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y�x
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0.6

0.8

1
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ΒFx��1
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�10

FIG. 2. Transverse profiles of the 2D density
��x ,y� in the cone bounded by y=x for the force
F positive �left� and negative �right picture�.

L

A�x�

y

0 x

F

FIG. 3. Linear approximation: the boundary y=A�x� is replaced
by its tangent �thick dashed line� at some x and the exact 2D density
is replaced by the density in the cone geometry �depicted by the
dashed arcs�.
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D�x� based on Eq. �3.13� approximates well the expanding
part of the channel x� �0,L /2�.

For x�L /2, A��x� becomes negative and the D�x� accord-
ing to Eq. �3.13� falls below the zero-force value �1.6�. These
values of the approximated D�x� are calculated for an infinite
cone, collecting the particles falling from infinity, so the par-
ticles are distributed mainly near the slanted boundary �see
Fig. 2�b��. The situation in the periodic channel is different;
the particles not feeling the boundary continue to move in
the stream near the x axis. So our approximation fails in this
region and gives too big contributions to T1�F�. If we do an
ad hoc correction of D�x� �for testing purposes� and take the
zero-force formula �1.6� for negative FA�, otherwise D�x�
according to Eq. �3.13�, we obtain the dashed line in Fig. 4,
which already improves the liner approximation.

Within the argumentation presented, D�x� should be
nearly unit until the particles start to hit the narrowing
boundaries in front of the bottleneck at x=L. D�x� should fall
below the value of Eq. �1.6� here. After passing the bottle-
neck, D�x� should rise again according to Eq. �3.13� and
approach unit when the stream not feeling the boundaries is
formed. Thus, only the region near the bottleneck gives
D�x��1 in strong fields. It is getting smaller with growing
force and so the mobility approaches the values predicted by
the FJ equation.

Unfortunately, the extended linear approximation is not
able to fulfill this scenario in a rigorous way �if we refuse to
do some ad hoc modifications�. Looking for better approxi-
mations, including probably higher derivatives of A�x�, is the
task for the future.

IV. CONCLUSION

We showed in this paper that the diffusion in a channel of
varying cross section A�x� exposed to an external force par-
allel to the longitudinal direction can be mapped onto the
longitudinal dimension in the same way as the diffusion
alone. Instead of the diffusion equation, we start from the 2D
�or more dimensional� Smoluchowski equation �2.1�, where

the anisotropy of the diffusion constant, equivalent to the
scaling of the transverse lengths, can be introduced as well.
This is used in the mapping procedure to project out the
transients and to arrive rigorously at a 1D evolution equation
of the Fick-Jacobs type �1.7�.

In the case of instant equilibration in the transverse direc-
tions �infinite transverse diffusion constant�, the mapped 1D
equation is consistent with the concept of the “entropic po-
tential;” the function Uent�x�=−kBT ln A�x� can be simple
added to the real potential U�x�. This is not valid if the trans-
verse relaxation is slower. The flux has to be corrected by an
operator �2.10� in general, which becomes a function D�x� in
the limit of the stationary flow, an equivalent of the effective
diffusion coefficient. In this case, it does not depend only on
derivatives of A�x� but also on derivatives of the potential
U�x�. The expansion of D�x� in the parameter of anisotropy �
�2.20� is generated by the mapping procedure up to an arbi-
trary order.

We tested this expansion on a model of the stationary
diffusion in an infinite linear cone in a homogeneous field,
which is exactly solvable. We found the exact formula for the
corresponding coefficient D�x�. A simple analysis encourages
us to interpret the resultant D�x� as a coefficient reflecting
how much the local shape of the boundary restricts the flow
of the particles diffusing under the force. If the flow is not
influenced by the boundary, D�x�→1, although the channel
is not flat.

The formula for D�x� in the cone �3.13� sums exactly all
the terms in the expansion �2.20�, depending only on A��x�
and U��x�. So it can be used for construction of the extended
linear approximation, replacing the local boundary A�x� by
its tangent at a point x and considering the local force F=
−U��x� to be constant. Although this strategy is successful
for the diffusion alone �it yields the formulas �1.5� and �1.6�,
which are used in practice�, its direct extension to the diffu-
sion under a force has its limitations in strong fields. Presum-
ably, the higher derivatives of A�x� have to be included in an
approximation working satisfactorily for typical shapes of
the channels.

Nevertheless, the mapping showed in a rigorous way that
correcting of the Fick-Jacobs equation by an effective coef-
ficient D�x� �1.7� is justified also in an external potential and
looking for such a function is meaningful.
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APPENDIX: DETAILED CALCULATIONS

We give here detailed calculations connected with analy-
sis of the stationary flow in the linear cone in a homogeneous
potential and derivation of the corresponding formula for
D�x� �Eq. �3.13��.

The function u�x ,y�, shaping the 2D density ��x ,y�
according to Eq. �3.1�, has the form �3.7� in the polar co-
ordinates. If the analytic function f�z�=g�z�tanh�z /2� and
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0.6
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Μ
FJ
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Lin � F

FIG. 4. The scaled mobility � in the periodic channel with
A�x�=1.02−cos 2�x depending on the applied force. The results
are obtained from the FJ equation �FJ�, the linear approximation
�1.6� �Lin�, the linear approximation extended for nonzero forces
according to Eq. �3.13� �dotted line�, and the linear approximation
corrected only for positive FA� �dashed line�.
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g�t+ i
�=g�t− i
�, also the BC �3.8� at the boundary y=�x
= �tan 
0�x is satisfied.

Our first task is to calculate the flux J by direct calcula-
tion. We rewrite u�r ,
� by splitting Eq. �3.7� into two inte-
grals, substituting for z= t+ i
 and z= t− i
 in the relevant
parts,

u�r,
� = �
i


	+i


e−��Fr/2�cosh�z−i
�g�z�tanh
z

2
dz

+ �
−i


	−i


e−��Fr/2�cosh�z+i
�g�z�tanh
z

2
dz , �A1�

and by using r cosh�z� i
�=x cosh z� iy sinh z in the expo-
nents, we restore the Cartesian coordinates. Next, we can
change the integration paths

�
�i


	�i


. . .dz → �
�i


0

. . .dz + �
0

	

. . .dz + �
	

	�i


. . .dz ,

as the corresponding contours do not enclose any pole. The
first integrals from both parts cancel one another and the last
ones are zero. Finally,

��x,y� = e�Fx/2�
0

	

�ei��Fy/2�sinh z

+ e−i��Fy/2�sinh z�e−��Fx/2�cosh zg�z�tanh�z/2�dz .

�A2�

We calculate the total flux

J = �
0

�x

jx�x,y�dy

= − �
0

�x

e�Fx�x�e−�Fx��x,y��dy

= − ie�Fx/2�
0

	

�ei��Fx�/2�sinh z

− e−i��Fx�/2�sinh z�e−��Fx/2�cosh zg�z�dz , �A3�

after trivial integration over y. Now, we use the relation
cosh z� i� sinh z=cosh�z� i
0� /cos 
0, split again the inte-
gral, and return the substitutions t=z� i
0 in the relevant
parts. Due to the BC, g�t� i
0�= ḡ�t� and both integrated
functions are the same; we get

��
−i
0

	−i
0

− �
i
0

	+i
0 �exp�− �Fx cosh t

2 cos 
0
�ḡ�t�dt .

We can add the integral from −i
0 to i
0, which is zero due
to symmetry, and close the loop in infinity, so

J = − ie�Fx/2� exp�− �Fx cosh t

2 cos 
0
�ḡ�t�dt , �A4�

the integration contour is depicted in Fig. 5. For g0�z�
=coth��z /2
0�, the function ḡ0�t�=tanh��t /2
0� has poles
at t= � i
0, just in the corners of the contour. We replace this
contour by three loops: the first one avoiding the poles and

two small sectors ��→0� in their vicinity. Integration around
the first loop does not enclose poles, so it gives zero. The last
ones are integrals of the type

� f�z�
dz

z
= ��

0+

�

+ �
�

i�

�arc� + �
i�

i0+ � f�z�
dz

z
→ i

�

2
f�0� ,

applying it on the integral �A4� for both poles, we arrive at
J=2
0 �Eq. �3.10��.

The other solutions generated by the functions g�z�
=sinh�n�z /
0� do not give rise to the poles of ḡ�t� inside or
at the contour �Fig. 5�, so the corresponding 1D flux is zero;
these modes are the transients.

Having calculated the 2D density ��x ,y� and the corre-
sponding flux J, we can derive the effective coefficient D�x�
according to the formula �3.12�. Nevertheless, the integration
of ��x ,y� is difficult in our model, so we recast this relation
into a form, in which only the 2D density at the slanted
boundary �b�x�=��x ,�x� is necessary.

First, we express the 1D density p�x� by using �b�x� and
J; the expression

e�Fx�xe
−�Fxp�x� = e�Fx�x�

0

�x

e−�Fx��x,y�dy

= e�Fx��e−�Fx��x,�x�

+ �
0

�x

�x�e−�Fx��x,y��dy�
= ��b�x� − J .

Hence, after integration over x,

p�x� =
J

�F
+ �e�Fx� e−�Fx�b�x�dx . �A5�

Then from Eq. �2.17�,

J

D�x�
= − �xe�Fx�x� 1

�x
e−�Fxp�x��

= J − ��b�x�

+
1

x
� J

�F
+ �e�Fx� e−�Fx�b�x�dx� ,

the most convenient form for our next purposes is obtained
after integration by parts

Re t0

∆

Im t

iΦ0

�iΦ0

FIG. 5. Integration contour for the flux J.
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1

D�x�
= 1 +

1

�Fx
−

�

Jx
e�Fx� x�e−�Fx�b�x���dx . �A6�

The integration constant has to be fixed to remove the diver-
gent terms �1 /�Fx.

Now, we express �exp�−�Fx��b�x���. Taking the formula
�3.7� with f�z� according to Eq. �3.11�, we get

u�x,�x� = �
0

	 �tanh
t + i
0

2
+ tanh

t − i
0

2
�e−��Fr/2�cosh tḡ�t�dt

= �
0

	 2 sinh tdt

cosh t + cos 
0
e−��Fr/2�cosh t tanh

�t

2
0
, �A7�

as g�t� i
0�= ḡ�t�=tanh��t /2
0� at the boundary; r
=x /cos 
0. Then

�e−�Fx�b�x��� = �e−�Fx/2u�x,�x���

= −
2�


0x
e−�Fx/2�

0

	

e−��Fr/2�cosh t dt

1 + cosh��t/
0�

�A8�

after integrating by parts. Applying this relation in Eq. �A6�,
taking J=2
0 and completing easy integration in x, we find

1

D�x�
= 1 +

1

�Fx
−

2��

�Fx
0
2e�Fx

���
0

	 dt

„1 + cosh��t/
0�…
cos 
0

�cosh t + cos 
0�

�exp�−
�Fx

2
� cosh t

cos 
0
+ 1�� + C0� ,

the integration constant C0 is fixed to remove the diverging
term proportional to 1 /�Fx. As the integral

�
0

	 dt

�1 + cosh �t/
0�
cos 
0

�cosh t + cos 
0�
=


0
2

2��
, �A9�

the constant C0=0 and we arrive at the formula �3.13�.
The integral �A9� and similar integrals obtained when

1 /D�x� is expanded in �Fx are calculated by an integral

� iF�z�
dz

1 − cosh��z/
0�
�A10�

along the contour in the complex plain depicted in Fig. 6. If
we split it to the lower part and the upper part and substitute

for the integration variable z= t− i
0 and z= t+ i
0, respec-
tively, we get

=i�
−	

	

�F�t − i
0� − F�t + i
0��
dt

1 + cosh��t/
0�
.

The integral �A9� is related to Eq. �A10� for F�z�
=tanh�z /2�. Then the contour of Eq. �A10� encloses a simple
pole at z=0. So we get

2
0
2

�
= �

−	

	 2 sin 
0

�cosh t + cos 
0�
dt

�1 + cosh �t/
0�
,

hence we obtain the relation �A9�.
For any integral appearing in the expansion of 1 /D�x� in

�Fx, one can find the corresponding function F�z� and to
express it explicitly. The most transparent way is to deal with
a function

�a��� = �
0

	

e−� cosh t adt

1 + cosh�at�
, �A11�

entering Eq. �A8�, where �=�Fr /2 and a=� /
0. If it is
�formally� expanded in �, we get

�a��� = �
0

	 adt

1 + cosh�at��k=0

	
�− ��k

k!
coshk t

= �
0

	 adt

1 + cosh�at��I0�− �� + 2�
n=1

In�− ��cosh nt� ,

In are the Bessel functions. The function F�z�=z in Eq. �A10�
generates the coefficient at I0 and F�z�=sinh nz is to be used
to calculate the coefficients at In. The result

�a��� = I0�− �� + 2�
n=1

In�− ��
n�/a

sin�n�/a�
�A12�

can be expanded in �, applied in Eq. �A8�, and integrated in
Eq. �A6� to gain the expansion �3.14� of 1 /D�x�.

Let us notice that the coefficients at In for n�a diverge;
the function �a��� �and so 1 /D�x� too� is not analytic at �
=0 for any finite a. The summation in Eq. �A12� has the
upper limit a−1 and there is a remainder O��a� there. Still,
we can use it for gaining the expansion �3.15� in � and �
=tan 
0=tan�� /a�, i.e., for 1 /a→0, where all derivatives in
� exist.

Of course, the problem is to do an analytic continuation of
the formula �3.13� for F�0 �or �a��� for ��0�. To resolve
it, we return to the interpretation of the solutions of Eq. �3.2�;
the Bessel functions I� cannot be excluded in principle in
confined geometries. Aside from K�, the solution u�r ,
� of
Eq. �3.2� can contain also combinations of I��−�Fr�cos n
.
To generalize it, we use the integral formula for I� �17�,

Re z0a pole

Im z

iΦ0

�iΦ0

FIG. 6. Contour for the integral �A10�.
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I��r� =
1

�
�

0

�

er cos � cos ��d� −
sin ��

�
�

0

	

e−�t−r cosh tdt

=
1

2�i��−	−i�

−i�

+ �
−i�

i�

+ �
i�

	+i� �e−�z−r cosh zdz ,

if represented by an integral in the complex plain. This
serves for our inspiration that the solution u�r ,
� �3.7� could
be extended to negative forces F by changing the integration
path from the positive part of the real axis to a line composed
of �0, � i�� and ��i� ,	� i��. We can check that the inte-
gral

�
0

	�i�

e�−�Fr/2�cosh t�f�t + i
� + f�t − i
��dt �A13�

solves Eq. �3.2� for negative F; if used in Eq. �3.2�, the same
condition �f��t+ i
�+ f��t− i
�� 
t=0=0 is obtained after

double integration by parts. The treatment fixing the BC
�3.8� remains the same, too, giving the condition f�z�
=g�z�tanh�z /2� and g�t+ i
0�=g�t− i
0�, which is to be sat-
isfied for any �complex� t along the integration path.

The solution of our interest is generated again by g�z�
=coth��z /2
0�, but this function gives rise to poles on the
imaginary axis. They have to be avoided from the right side,
as depicted in Fig. 7. It becomes clear after calculation of the
flux J, which is done in the same way as for F�0 �Eqs.
�A1�–�A4��. In the last step, the corresponding contour of the
integral �A4� has to include only the poles at t= � i
0 as in
the case of positive force.

The final formula for � takes an average of the integrals
over the upper and the lower paths for F�0 to provide a real
value of the result. By construction, the integrals in Eq. �A8�,
�a��� �Eq. �A11��, and in 1 /D�x� �Eq. �3.13�� have to be
calculated in the same way, along the same path.

We can check the expansion of �a��� for ��0. The co-
efficients at In�−�� are integrals of the same functions but are
integrated along the changed path. Nevertheless, for n�a,
the integrated functions are zero at t→	 plus an arbitrary i
,
so we can form a closed contour from the both paths, for the
negative �full line� and the positive � �the dashed line in Fig.
7�. This contour does not enclose any pole of these functions,
so the integration along both paths gives the same result. For
any a, the first a−1 derivatives of �a��� at �=0 �as well as
of 1 /D�x� at x=0� are the same whether calculated for nega-
tive or positive �; it can be considered as a “weak” analytic
continuation of �a��� �Eq. �A11�� to negative �.
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